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Introduction
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The Method of Moments
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Galerkin Method Integral Equation

o Eamvars @ s *Usually uses PEC approximation

equation to a matrix *Usually based on current

equation

Ere = I L(z )(k2+—z

4iz'r

\ !/

The Method of Moments

il

Vs

Vy

Ve

Vs

|
d

Slide 4

7/21/2017



7/21/2017

Pocklington’s and Hallen’s
Integral Equations
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Maxwell’s Equations

* Frequency-domain
« Differential form
* Constitutive relations have be substituted
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Definition of Magnetic Vector Potential CEM

Since Vo(yﬁ) -0, the term uH is solenoidal. This means it only
forms loops so it can be written in terms of the curl of some other
vector function 4.

—_ —_
We call that other vector function 4 the magnetic vector potential

because it shares many attributes of the electric scalar potential.

The magnetic vector potential is not a physical quantity, but is useful
in simplifying the mathematics of some electromagnetic analyses.

Lecture 28 Slide 7

Definition of Electric Scalar Potential CEM

We can substitute the magnetic vector potential into VxE =—jouH
to arrive at

VxE:—ja),u(VXA}
U

VxE+ joVxA=0
Vx(E+ja);1):0

The term inside the parentheses has zero curl. This means it is
“conservative” and behaves like a static electric field. We define the
electric scalar potential @ from this quantity.

E+ij:—VCI)

Lecture 28
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Lorentz Gauge Condition

We now have more variables than we have degrees of freedom so

we need to “fix the gauge.” We do this be relating some of the
variables.

We have yet to specify anything about the divergence of the

magnetic vector potential. For convenience and to fix the gauge, we
let

—

Ved=—jousd
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Wave Equation in Terms of Potentials (1 of 2) CEN

First, we write VxH =J + josE in terms of the magnetic vector
potential.

VX(VXAJ=j+ja)8E
7

To simplify this further, we must assume our antenna is embedded in a
homogeneous medium. Now our equation reduces to

v(v-Z)—VZZ = uJ + jousE
We now substitute the electric scalar potential into this equation.

V221+a)2,u.9;1—V(ja)y‘s®+Vo;l)=—,uj
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Wave Equation in Terms of Potentials (2 of 2) CEN

Next, we eliminate the electric scalar potential using the Lorentz
gauge condition.

V2A+ @  ued=—uJ

We now have a vector wave equation that relates the magnetic vector
potential and current. This is ideal for antenna analysis!

Recognizing that A° = @’ ue 4, the vector wave equation can also be
written as

VA+ B A=-ul

Lecture 28

Slide 11

Z-Axis Thin Wire

The vector wave equation can be written in matrix form as

AX AX Jx
VA+ @’ usA=-puJ — V? A |+p A, |=-u|J,
A A J

Zz Z z

For thin wire structures, we assume the currents are restricted to the

direction of the wire. For a z-axis oriented thin wire, the wave
equation reduces to

A A 0
V2 A |+B A, |=-p| 0
AZ AZ JZ

Therefore, 4, =4, =0
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Revised Equations CEM

Given the z-axis thin wire approximation, the Lorentz gauge condition
reduces to

- A
Ved=—jousd — aazz—ja),uafb
4

Our definition of electric scalar potential reduces to

oD

E+ jod=-V® — E +jod =
zZ

Combining the above equations, we arrive at

2 This is not our differential equation
1 04, 2 Ive. Thisis h il
Ez = > + o ,ugAz to solve. is is how we wi
jous Oz calculate the electric field from the
magnetic vector potential.
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What is a Green’s Function

Suppose a device can be decomposed into many identical small
elements.

If the response of one of these elements can be obtained, then the
overall solution is the superposition of the response of all of the tiny
elements comprising the device.

The response of one of these tiny elements is called the Green’s

function. The overall solution is obtained by integrating the Green’s
function over the domain of the device.
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Illustration of a Green’s Function

We can visualizing integrating a Green’s function this way...

Observation point

—"

Slide 15
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Green’s Function for Small Current Element (1 of 2) (CEN

Our wave equation for the z-axis thin wire is

VA + A =—uJ.

Away from the wire, J.= 0 and the differential equation reduces to

7 = observation point

Vi + =0
This has a solution of
. ~JjBR
G(7.7)=5 R
4z R

7' = point along wire

I
=)
I
Ny

—~
~

¥ = observation point
¥ = location of point source of current
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Green’s Function for Small Current Element (2 of 2) (CEN

The total magnetic vector potential is obtained by integrating the
Green'’s function everywhere. The kernel of this integration will be
zero except where there is current so the integral only has to be
performed over the volume of space where there is current.

A, = |[[ .Gay

For z-axis thin wires, this becomes

Lj2 p2z [ (Z') o /AR
A — z ! !
Z (p,¢,z) “ 1)2 jo 27 4rnR dfdz

We have assumed the current is uniform in the cross section of the wire.
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Thin Wire Approximation CEM

Assume the wire is very thin relative to
its length.

a<k L

The incident wave excites a current on
the thin wire.

=77
2rwa

J(7)= L(z),

We assume there is no dependence on
the wire azimuthal angle ¢.

We assume that the current goes to zero
1(0)=0 at the extreme ends of the wire.

1.(0)=1(L)=0
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Magnetic Vector Potential (1 of 3) CEM

The magnetic vector potential on the surface of the wire due to the current in the
wire is written in terms of a surface integral.

—jkR

L2 2;71 ) o
4. (p.9.2)= 1 /.[ 2 47sz¢d

Where R is the distance from the point in the integral to ©

the observation point.

R\/ZZ pp)

Since the magnetic vector potential is written on the
surface of the wire, p'=a.

12 2 2 '
(p—p') =p*+a*—2pacos(¢' —¢)
Due to the cylindrical symmetry, we can replace ¢-¢
with just ¢ without loss of generality.

(,0 _ ,0')2 — p2 + ,/-2 _ 2,07" CcoS ¢’ We integrate on surface of

cylinder
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Magnetic Vector Potential (2 of 3) CEM

The magnetic vector potential can now be written as

L2 "\ p27 ,—JkR
AZ('O’¢’Z):”I IZ(Z)J‘ e dgdz
-L/2 2

o 47R

R= \/(z—z')z +p*+a’ —2pacosd’
If a is very small,
R= (z—z')2 +p’

Then there is no ¢ dependence and the magnetic vector potential equation reduces
to

— jkR
dz' < “Thin wire approximation with

N €
Az (IO’Z) =H IZ (Z ) AR z reduced kernel”

~L/2

The surface integral has been reduced to a line integral.

Lecture 28 Slide 20

7/21/2017

10



Magnetic Vector Potential (3 of 3) CEM

For the line integral, we assume the testing points are located on the z-axis. When
this is the case, p=a. and the magnetic vector potential can be written as only a
function of z.

L2 —JkR

e
A = I (Z
Z(Z) # -L/2 Z(Z )47Z'R

dz'

R= (z—z')2+a2

Lecture 28 Slide 21

Incident and Radiated Field CEM

The radiated field on the surface of the wire is obtained from the magnetic vector
potential on the surface of the wire.

. 2 . 2
E™ = jod —— O 4o T Oy
wue 0z UE oz
K =kype,

Boundary conditions require that the field on the surface of the wire is zero. The
field on the surface is the sum of the incident and radiated fields.

total d i
EF=E™+E™ =0
Therefore, we can write

. 82 PEC Approximation
inc __ rad __ J 2
E™ =_E" ——g{k +—}AZ

wu
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Hallen’s Integral Equation

Recall the following equations:

L2 e—ij p
A — [ [ !
Z(Z) H -1/2 Z<Z)47Z'R :
. 2
Er =1 {kz + 8—2} A
oue oz

Substituting the first equation into the second leads to Hallen’s integral equation.

) . 2 /2 —JkR
E;““(z):i{k2+a—2} [IRAE =

wE oz “1)2 4R

R= (Z—Z')2+a2
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Pocklington’s Integral Equation

Starting with Hallen’s integral equation

) . 2 /2 —JkR
E;““(z):i{k2+a—2} [IRAE =

wE oz “1)2 4R

We move the differential operator under the integral sign.

Einc ] L/2I ! kz ? e_ij d '
Z (Z)_EL/Z Lo [

While Pocklington’s equation is the most famous and easier to solve, it is not as well
behaved as Hallen’s equation resulting in slower convergence and poorer accuracy.

Lecture 28 Slide 24
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Visualizing Pocklington’s Integral EquationtCENI

WE V-1)2

vy d [ Al 2]
E! (z):— Iz(z )[kzﬁ—? 4”rdz

We formulated Pocklington’s
integral equation with being a
receiving antenna in mind.

We will implement the equation
as a transmitting antenna.

oy
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Convergence Comparison

700 T T T
——Hallen

—Pocklington| A

Z,=703Q A

0 | | | 1 | | | 1 1 |
10 20 30 40 50 60 70 80 90 100
Number of Segments
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Method of Moments
Solution to
Pocklington’s Equation

Setup for the Galerkin Method

We start with Pocklington’s integral equation in the following form.

L/2 2 —jkR )
J Iz(z’){k2 +8_}e dz' =—jweE™ (z)

0z° |4nR

This has the form of L{ f} g where

12 o’ e/
L — I ' 2 -~ '
{f} J.—L/Z Z(Z){k +aZZ:|47Z'R dz

—jwe
[=1(2)
g=E"(z)

cture 28 Slide 28
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Recall the Galerkin Method

L{f}=¢

Step 1 — Expand unknown into set of basis functions

L{Zﬂ:anvn}=g

Step 2 — Test both sides against basis functions.

<vm,L{;anv,, }> =(v,.¢)

Step 3 — Construct matrix equation

;a"<v’"’[’{vn}>=<v’"’g> <vl,L{v1}> <vI,L{v2}> a, g
<V2’L{V1}> <V2’L{v2}> ‘ a.z _ gz

Lecture 28
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Galerkin Method — Step 1

Pocklington’s integral equation...
L/2 52
j L(2)| K+
12 0z°
We expand the current function into a set of basis functions.
=2.4,v,(2)

Substituting this into Pocklington’s equation yields

L/Z[zan W (2 }[ku_zh = josE ()

n

- ij

dz’ =—jweE™ (z)

2 —kR
Y e e
Z

n v
n

Lecture 28
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Galerkin Method — Step 2 CEM

We test both sides of the equation with the basis functions using the inner product.

’ 2 62 e_ij ’ . inc
Zanfvn(z) k t—3 4;erZ =—jweE™ (z)

vVl

<vm (z),Zan J. v, (z'){k2 +§—;} Z”jk; dz'> = <vm (z),—joweE™ (z)>

Zan <vm (z), f v, (z'){k2 +8a_222} Z_”jk; dz'> =—jwe <vm (z),EZinc (z)>

Slide 31
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Galerkin Method — Step 3

= [zu]la,]=[e.]
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Pulse Basis Functions (1 of 3)

We let our basis functions be pulse functions defined only on the segments.
. . th pE——
0 zisoutsidem™ segment —%(2)  Thisis called
Vi (Z) = s e e th ——u(2) oint-matchin
1 zisinside m" segment —nw(z) P &
_n__v(2)
Using these basis functions, we have
o e, 2
—_[ I )| K+ dzdz R=y(z,-z2) +d’
az
Znt 2 JKR k z'=z +E
1+ jkR "2
=k? j dz'+ (Z ) ]3 Jhr
x 47R R e
Ty "2
g, = —ja)SJ. v, (Z)Ezi"" (z)dz
=—jweE™ (z,)
Lecture 28 Slide 33

Pulse Basis Functions (2 of 3) CEM

When calculating the impedance elements, we must evaluate the following integral
as part of those calculations.

e , -
IM4ﬂRdZ R= (Zm_z)2+a2

"2

When m = n, we can use a small argument approximation.

Az
Z"’:'[z o kR s A]/Z 1— ]de , Lln 1+(2a/Az)2 +1 _jkAZ
Ta AR ipp 4R 4r \/1+(2a/Az)2 1| 4x
"2

Otherwise, we must numerically evaluate the integral.
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Pulse Basis Functions (3 of 3)

We can now interpret [a] as a column vector containing the currents in each
segment of the antenna.

[a]=[1

[z ][a]=[2.]

Lecture 28 Slide 35

Transformation to True Impedance MatrixCENI

The matrix equation is

[z ][] =[2.]

The a, coefficients are the currents in each segment. The g, coefficients are scaled
electric fields. Based on this, it is more intuitive to write the matrix equation as

[zmn][in] = [—ja)gEzi“C (zm )]

We would like the units on the right-hand side to be voltage so that the [Z] matrix is
true impedance. Voltage is related to the electric field through

inc Vm
Ez (Zm ) = E

The final matrix equation in terms of element voltage and current is
JAZr = jAzn .
—Lzalli]=0] Mzl =10

True Z

Lecture 28 Slide 36
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Singularity in Pocklington’s Equation

Recall the equation to compute the impedance elements.

Zyn =

Lecture 28

1+(2a/Az)’ +1] R T
L +(2a/Az) + _]kAZ+‘:(2m_Z, 1+ kRe_,k,]
47| J1+(2a/A2) -1

iy 4

Strong singularity!!

*Slow convergence
*Poor accuracy

Slide 37

Implementation

' Initialize MATLAB |

Define Simulation Parameters
* Wavelength, 4,

* Antenna length, L

* Wire radius, a

* Atmosphere, . and ¢,

* Number of segments, N

|
Compute Constants

k, =27/ 2,
k=ko\ 1€,

Az=L/N
za=[0:N-1]-Az

— Build Impedance Matrix | See next slide
|
Transform to True Impedance

Az
‘ ="z
| J k

|
Compute Admittance Matrix
Y=27"
|
Compute Source Voltage
] =[0 0 ~ 1 - 0 0]
|
Compute Current
[i1=[z.]"[]
|
Compute Input Impedance
Z,=v,/i,

Optional

fed at segment n

Lecture 28

|
Compute Gain/Pattern I
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Building the Impedance Matrix

Calculation Step #1

z form=n
) .
Zpy =9 0 e
Compute Diagonal Term | g formen
» 47R
ey

1 1+(2a/Az)2 +1| jkAz

z :ln[ i
A | 1+ (2a/A2) —1] 4z

Calculation Step #2
l r]=1'(zm—zn+Az/2)z+a2

Loop Over all m and n l ----------------- :
t=(z,-z, +Az/2)71+]3kr1 e
i

1, =+/(z, —z,— Az[2)’ +a

t = (zm =%, —Az/2)71+]3kr2 et
rZ

2.0
z,,=k'z, +t,—t

Lecture 28
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Thin Wire Excitations
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What is an Excitation?

Many antenna parameters are most easily calculated when the
antenna is treated as a transmitting device.

The excitation of the antenna is the manner in which energy is “fed”
into the antenna from an external source so that it can be radiated.

The properties of an antenna depend very much on how and where
energy is applied to the structure.

The feed system of an antenna is a hugely complex subject so our
approach will be to model the feed method and not the feed itself.

N

\

1
-—) ,' Feed network
e

N -

!
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The Delta-Gap Source

The detla-gap source models the feed as if the incident field exists
only in the small gap at the antenna terminals.

This is the simplest source to implement. It performs well for
computing radiation patterns, but is usually less accurate for
impedance calculations.

4 Yo 2
‘Jiro A p (z) _ z atthe gap
f 0 elsewhere

Lecture 28 Slide 42
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The Magnetic Frill Source CEM

The magnetic frill source models the feed magnetic field circulating
around the thin wire at the feed.

This source is slightly more difficult to implement and involves more
computations for the source, but is more accurate.

B Fine 1 e e
B = : (Z)_21n(b/a)[ v - A
r, =Nz’ +a’
a b=3a
T, = Nzi+b?
Lecture 28 Slide 43

Impedance Loading
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Incorporating Impedance Loading CEM

Pocklington’s Integral Equation Matrix Equation
j NE: ) Pais , Method of
I1(Z)| =+ |=—d' =V (2) ! > [Z)[1]=]V]
weNz [o4 4zr Moments
L
Perfectly Conducting Dipole ‘
: Zn Zn Zn EZy As Eg I 4 Vi
Iy Zn Iy Iy I Iy Iy i V)
Zy 2y Iy Iy Iy i} V3
Za Za Zis Zas Zw iA =V
Zs Zsy Zss I Iy iS VS
Ze1 Zoa Zes Zes Zer i() Ve
Zn Zn I Zn I I In i7 Vr
Wtz om ow oz oa & & |[4] [
o mtL, oz Z & m o b |w
W I w4 ;e Z 3z || |w
T e A T A AR
T T e A A A
o e Fa Ge Fe ZwtZe g ||io| |
L e I
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