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Beam Propagation Method
(BPM)
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Overview

Slide 3
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I— BPM is implemented on a grid. There are no layers.
b
e longitudinal direction s
BPM is primarily a “forward” propagating algorithm where the dominant direction of propagation is longitudinal.
The grid is computed and interpreted as it is in FDFD. The algorithm and implementation looks more like the method of
lines than it does FDFD.
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Example Simulation of a Coupled-Line Filter

This animation is NOT of the wave propagating through the device. Instead, it is the sequence
of how the solution is calculated.
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Starting Point

We start with Maxwell’s equations in the following form.

OF . 7 oH
& o, e =dlE,
oy o7 ’ o' oz
OE, E._ ., 5 ol, of,
az’ ax/ 'uyy y o' o' —Cwy
OE, OE ~ g 3
; -9 =ML, oH, o, =¢LE,
o' oy o' o 7

Recall that we have normalized the grid according to

x'=kyx V' =kyy z'=k,z
Recall that the material properties potentially incorporate a PML at
the x and y axis boundaries (propagation along z).

’ Sy ’ Sy ’ ’ S)" ’ Sy '
Mo = Mo . My =My, . H, =SS, £, =&, . £,=¢, . £, =E.8.S,
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Reduction to Two Dimensions
Assuming the device is uniform along the y direction,
6 =
'
and Maxwell’s equations reduce to
%*}f{:/éﬁ: %*%:c;&
OE - 7
~ = HLH, ~ O, ok
82 A 82' xxx
aEx _ aEz — 4, ]:I aI:I 81:[ ’
aZ ! ax ! we aZ! - axr = Wy
OE - 7
DA aHv ,
o' H z ax, =& EZ
Slide 8

< EMPossible

8



Two Distinct Modes
We see that Maxwell’s equations have decoupled into two distinct
modes.
E Mode H Mode
O0H. ©oH OE, OE, _ , ~
X F4 :8’ ,E, p —_ p = oy P
oz ox' ey oz ox
OF . oH
- ; =4 H - 2 — 8;;(Ex
aZ( ILIXX RY 621
aE}’ 3 al:lv 'E
=y H. g E
ox' He ox'
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Slowly Varying Envelope Approximation
Assuming the field is not changing rapidly, we can write the field as
- —~ L, = o, Not a good approximation to make for
E(x, Z) ~ § (.X', Z)e/nerrz H()C, Z) ~ y?(x, Z)ejneﬁz metamaterials and photonic crystals!
Better for lenses, waveguides, etc.
Substituting these solutions into our two sets of equations yields
E Mode H Mode
92 (x z)e’"“‘“' _ (x,2)e™ " =gl & (x,z)e" if (. z)ej”““f —if (x z)ej"“”z' =uy,(x z)ej”““"
o\ o e\ TEwerih o o\ o >\ T
75 ¢, (x,z)e’"“‘:' =y, (x,z)e’"“‘:' —%V/}, (x,2) e =gl & (x,z)ej"”‘”f
%5 (x z)e’”*‘“’ = oy (x z)e’ ns’ éy/y (x,z) e = el (x,z)e’"“":'
A" « .
JneV +/,‘7W,7 Oﬂwyz = Ej,‘ygy jncffé +L§:_L§Z, = :Ll)'\'l//y-
Oz ox oz ox
et~ = s, i, L=,
74 oz
% _ W,
o MY wj—@é
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Matrix Form of Differential Equations

Each of these equations is written once for every point in the grid. This large set of equations

can be written in matrix form as

E Mode H Mode
dy. 0 ) o, 0L
TNV +§_§ = 5[3‘;» ./”el’fé +(’7’7§7 (3f' =MLY,
P . oy,
—jnmé,—gzﬂ;% SNy = ;Z/, =08,
o, _ o, _,
o T HY P &g,
: 2 : 2
. dh, ) . de, .,
I+ -Dlh, =¢ e, Jnge,+——-Die. =p,h,
_jncffey - T}y = p’xxhx _jncffhy _7; = axxex
e _ h _
Dxe." - p'ZZhZ thy - azzez
ﬁl EMPossible Slide 11
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We can reduce the set of three equations to a single equation. This is the matrix wave
equation.
d d d
. -1 . = 5 H -InE, _
_Jneffu'\'\ (‘/ncl‘(‘l +Eje,\ - dZ' p’.\:\ [j”cl‘l‘l +dzyjer _Dx p':zDX e,V - SWey
2
d’e,  de, B
dZ’Z} + Jzneff 7; + uxxDxHuzlefey + (ux,x‘syy - neszl)ey = 0
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Small Angle Approximation (1 of 2)

In many cases, the envelope of the electromagnetic field does not change rapidly as it
propagates.

Rapid Variation Slow Variation

(AN

e

m)))))))))

—

When this is the case, we can make the “small angle approximation.”
2
de, de,

<< — < also called the Fresnel approximation
12 '
dz dz

51 EMPossible
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Small Angle Approximation (2 of 2)

Given the small angle approximation
2
de, de

_r

2 << !
dz dz

2

oe
We can drop the 3 = term from our wave equation.
Z

2 de ~
%Z%+j2neff d—;+uMDfuﬂlDfey +(umsy'v —nfﬁl)ey =0

2

z Xy

\

de -
J2n d—zy, +n,DpDle, +(uxxsw —njffl)ey =0

de, j

' 21
< EMPossible
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de j

Yy _

Ae

r ¥
dz' 2ng

Different Finite-Difference Solutions

First, we write our matrix wave equation more compactly as

o Al =B 2
A= u'xxDx ll'zzDJ( +l'l'xxs)g\f _ncffI

How do we approximate the z-derivative with a finite-difference?

\

51 EMPossible

This is a standard finite-
difference evaluated at i+0.5

i+1 i .
ev _ev J i
: 2 = Ae Forward Euler
’ ry
Az 2n,q . . - '
Computationally simpler, but solution is nonlinear and
e’;l _e’y Jj » only first-order accurate at best. Can be unstable.
v = Ey €y Backward Euler
neff
et _e i A ]eifl + A.ei, .
r = J ity -7 Crank-Nicolson
Az 21 2

This term is

interpolated at i+0.5. The Crank-Nicolson method is second-

order accurate and unconditionally stable.

Slide 15
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i+l i
—e€

e}’ Yy

. . j+1
Solving our new equation for €, leads to

j Ale

Forward Step Equation

i+l

i
o Al.ey

< EMPossible

Az 2ny, 2

-1
. iAz' iAz' .
el = 1-L25A | |1+ L25A Je
g 4neﬁ' 4neﬁ' g

We now have a way of calculating the field in a following slice
based only the field in the previous slice.

Backward waves are ignored in this formulation.

Note: We need to make a good guess for the value of 7.

\
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Implementation
of 2D FD-BPM

Slide 17
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Grid Schemes for BPM
Periodic Structures Finite Structures
No BC Needed! No BC Needed!
No spacer needed!
No spacer
needed!
2 > o <A
" X ot
o0 8 5 K2
[a) 2 . g
> No spacer >
No spacer needed! needed!
No BC Needed! No BC Needed!
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The Effective Refractive Index, n

Recall the slowly varying envelop approximation.

E(x,z) =& (x,z)e" ﬁ(x,z) ~y(x,z)e™

The BPM does not calculate n.;. We must tell BPM what is 7.

How do we know n . without modeling the device?

- We have to calculate it or estimate it.

Techniques:

1. For plane waves and beams, calculate the average refractive index in the cross section of
your grid to estimate the longitudinal wave vector.

2. For waveguide problems, calculate the effective index of your guided mode rigorously and
use that in BPM.

ﬁl EMPossible Slide 19
19
Define simulation
parameters :
1 ]
1 >
Calculate | Post process
optimized grid 1 :
1
| |
Build device : Extract slice & diagonalize. :
ongrid | n® and g 1
1 1
! . { .
Compute matrix : Compute propagator P :
derivative operators | A= -1 iAs 1
o 7 | Pi—n+1 = {17 J= AHI] [I + J Ai] 1
D{ and D} i dng dn \
! (i N e L (1), I =
i . A, =p% () D5 e -1 1 §
Compute source at 1 o
fpirst lane ! ‘!' 1o
P 1 Compute field in : o
Ey(:,1) = 2; : next plane | N
_ 1
BPM can handle : €= PHHle, 1
modes, beams, Choose | I 1
plane waves, etc., | 1
very easily. i’leg | 1
i EMPossible e e o e e e 1 Slide 20
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Formulation of
3D Finite-Difference
Beam Propagation Method

Slide 21
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Starting Point

We have the same starting point as with 2D FD-BPM.

OF - 7, oH
aiE%_ ),} = ﬂ;XHX %_ a 'V = SLYEY
o oz o o T
OE. OE. 1, _oH
7':_7:::”}*}* ¥y %_%ZS'HEY
o o % o Wy
OE, _%zﬂ, a oH, oH, 0
ax, ayr < ax! ayr _gzz z

Recall that we have normalized the grid according to
V' =ky
Recall that the material properties potentially incorporate a PML at the x and y axis
boundaries (propagation along z).

r__ r_
X' =kyx z' =kyz

r_
€x = g:zsxsy

s
. " y "
Hee = H2S,S, e T8 P Ey T Ey
x

© “(4

v, S v, S
Mo =My~ My = H,y,
s, s,
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E(x,z) ~ E(x,z)ej"e“z,

Maxwell’s equations become

H(x,z)= lﬁ(x,z)e’"e“z'

Slowly Varying Envelope Approximation

Assuming the field is not changing rapidly, we can write the field as

Not a good approximation to make for
metamaterials and photonic crystals!

Good for lenses, waveguides, etc.

OE. OE, - oH, 0H,
ER A T TV ¢ E
o o Ml Py s
O, OE. _ . & oH, ol
o o HyH, oz' =nky
%,%_ ' 81:1) al:lr '
o oyt o o~k
0. . o¢, , oy . oy,
; Jete =7 = S, eff — A CxSx
ay/ éy-] eff 62’ /uxx X ay! '//)] ff 62' X 5
. o5, 9 _ , v, Oy,
n v 22 =y Ty - E =g
&Iy % o MW, Y, e 2 ox 5;
aé:y aéx 4 a'//) 61//\ 2
T T MY e I
. ox' oy Ox oy
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Each of these equations is written once for every point in the grid. This large set of
equations can be written in matrix form as
X iy 05 Ve i Y
&' ny./”eff P =H Y EY, Y I Mg P =¢.¢,
0 0 0
S iney +T§_%:/‘;=W,~ YN +%—%:g‘ 5‘
o5 06 _ W, oy, _
o oy HY: oy =é.c.
e . ey ’ h . dhv ’
Dy'ez - .]neffey N = p’,‘ahx Dy’hz - ]neffhy - 7; = anex
dz dz
d dh
jneft‘ex + e): _Di’ez = u')yhv jneffhx +d7f_Di'hz = 8,\=\=e)7
) - »
Die, —Dje =p_h, D)h -D)h =gle
ﬁl EMPossible Slide 24
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Eliminate Longitudinal Components

We solve the third equation in each set for the longitudinal
components e, and h..

h,=p_'(Die, ~Die,) e.=¢.'(Dlh,~Dh,)

We now substitute these expressions into the remaining
equations.

de
D@ 8171 (Dflr’hy - D];"'hx ) - jneffey - = u’f\'xhx

_r
y'©zz dz'

8/25/2019

. de\' e 1 h ’
Jnge, +==-D%.' (Dih, ~D}h, )=ph, "
Dﬁ,,u;‘ (D;e", - Dj,ex)— Jngh, - dzf =g e,
. dhx h 1-1 e e '
Jncffhx + Z’ _Dx'p'zz (D-’f'e}’ _D,\"'ef) = ayye}’
51 EMPossible Slide 25
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Rearrange Terms
We rearrange or remaining finite-difference equations and collect the common terms.
der . e -1y ' e -1y
d ‘y = _‘]neffex _Dx'azz Dy'hx +(u)y + D.\"szz D.\")hy
Z
dev . ' e -1 e oIl
d v! = _‘]neffey _(uxx +Dv'szz Dy' )h\' + D\’f'azz Dx'hy
- . .
ddh: = _Dz'p”zlei'ex +(s;) + Df{'u;lDi')ev _jncffhx
2 ) :
= (2L +DIRCDY e, + DI Dle, — jingh,
- . ) )
< EMPossible Slide 26
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Block Matrix Form

We can now cast these four matrix equations into two block matrix equations.
de

x

. o -1y ' e -1y
L = e ~Diel Db+ (W), +D%e.'Dl)h,

de . , - ¢ roipyh
T; =—jnge, —(w, +D5e-'D) )b, + D5 e 'Dih,

d e, e, h, -De'D), w, +De D,
==Jhg| TPl P=
. N

' ’ e -1y e -1y
dz'| e, X h, W, +DEl'D))  Die'D

dh -y . iy .

;: =-Dip_'Dje, + (svy + Di—'l’«z;IDx)ey — Jhgh,

dh

y

Yy o _ ’ h o 1-lpye h o 1-lpye .
e (&, +DLn.'DS e, + DL 'Dle, - jngh,

‘ afh]  [h e, | DD
E hy __Jneff hy +Q e Q_ _(

’ h 1-1ye
£yy + Dx'"’z: Dx'
’ hr-1gye
, g, +D\n.'D;)

h1-1gye
Dy'”zz Dx’

51 EMPossible
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Matrix Wave Equation

We derive the matrix wave equation by combining the two block matrix equations. First, we
solve the first block matrix wave equation for the magnetic field term.

h e e
Y =P" d, T+ TP .
hy dz e, e,
Second, we substitute this into the second block matrix equation.
d -1 d ex . ex . -1 d ex g ex ex
P ‘ ——jn P L ‘
X [dzl |:ey:|+fnetf |:ey:|] et [dzl |:ey:|+]netf |:ey:|]+Q|:ey:|
d2 e.\’ . d e.\’ . d ex e)ﬁ eX
g |:ey i| + e dZ’|:eyi| == J Ny dZ'|:eyi| + nsztf |:ey j| +PQ |:ey:|
d* e, d e, ) e,
20, —| |=(niI+P
dZVZ |:ey:|+] ncff dZ, |:eyj| (ncff + Q)|:e}:|

< EMPossible
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Small Angle Approximation

slow. This means

dz eX d ex . .
= <<— < also called the Fresnel approximation
dz'" | e, dz'| e,

o’ |e
This means we can drop the —

X .
77| e } term from our wave equation.
iz

y

. d ex eX
+j2n, dz'L }: (n:ﬁ\I+PQ)L }
» y

¥

Assuming the fields to not diverge rapidly, then the variation in the field longitudinally will be

\2
€ e
ir "= ;(nezﬂl-i_ PQ) ’
dz'|e, | j2ng e,
51 EMPossible Slide 29
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Explicit Finite-Difference Approximation
First, we write our matrix wave equation more compactly as
€
®__1 ae é=| | A=nlI+PQ
dz' j2ng €,
We explicitly approximate the z-derivative with a finite-difference.
de = ! A€
dz'  j2n
\’
e e e e - ex,i
€ "6 _ 1 A6, +Ag €, :{ :| A, = nezml +PQ,
Az’ J2n 4 2. €.
This term is
o o interpolated at i+0.5.
This is a standard finite- Note: This is called the Crank-Nicolson scheme
difference evaluated at /+0.5 because it is a central finite-difference.
< EMPossible Slide 30
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Forward Step Equation

Solving our new equation for €., leads to

€., —€ — I A&+ Ai_éi
Az J2n,, 2
\

-1

~ AZ' Az N

€= (I - A"+1J {I +- Aijei
Jan Jan

We now have a way of calculating the field in a following slice
based only the field in the previous slice.

Backward waves are ignored in this formulation.
Note: We need to make a good guess for the value of n_g.

ﬁl EMPossible Slide 31
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Alternative Formulations
of BPM

Slide 32
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FFT-BPM

The FFT based BPM was the first BPM. It was essentially replaced by FD-BPM because FFT-BPM has the following

disadvantages:

* Simulations were slow (FFTs are computationally intensive)
* Discretization in the transverse dimension must be uniform
* No transparent boundary condition could be used

* Very small discretization widths were not feasible

* Polarization cannot be treated

* Inaccurate for high contrast devices

M. D. Feit, J. A. Fleck, Jr., “Light
propagation in graded-index
optical fibers,” Applied Optics,
Vol. 17, No. 24, December 1978.

Algorithm to Propagate One Layer

* Propagation step must be small 1.
one |ayer
\ ) 2.
! éz I i !
% *\\\( | Introduce
i i | material phase 3.
: 71| inreal-space.
s s )
B | x i '
e 0o
R 5.

propggate | propagate

plane waves | plane waves  /

FFT the fields to calculate plane
wave spectrum.

Add phase for one half of layer
to plane waves according to
their longitudinal wave vector.
Inverse FFT at mid-point to

reconstruct the real-space field.

Introduce the phase due to the
materials in the layer.

Repeat steps 1 to 3 for the
second half of the layer.

WEMPossble T Slide 33
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Wide Angle FD-BPM — Recurrence Formula
The wave equation before the small angle approximation was made
was:
azév . aé ’ 6 1 aé: 1o 2
62'2 +j2n; ?j"’ﬂm o 4, ax}' +(/Jxxgyy _neff)é:y =0
This can be written more compactly as
e g , 018 .,
62'; + j 20 572),4' A‘fy =0 A=, & o &‘*'#xxgyy _nczn‘
We can rearrange this differential equation to derive a recurrence
formula for the derivatives.
A 4
o :| J2ny; N 0 J2n;
’ §1’: - ér 4 ’ =
{az Lo o, , 1 9
J2ng oz’ J2ng oz'|,
ﬁl EMPossible Slide 34
34

8/25/2019

17



Wide Angle FD-BPM — Padé Approximant Operators
We initialize the recurrence with
S
oz'|,
0th Order (Small Angle) 15t Order (Wide Angle)
A 4 4
0 = T =7 4 o _ J2n _ o 2ng
oz, 1+;i, 2y oz'|, 1+ 1 0] 1+ A
J2ng O] J2ng oz'|, 4n§ff
2" Order (Wide Angle)
A A A?
5 —71_2”0{{ .Tncﬁ- +78n§,-,- < The numerator and denominator are poly.nomials of
o = . 0 = 1 __ the operator 4 of orders N and D respectively.
2 I+—
J2nge Ol e This leads to the Padé Approximate operators
, denoted as Padé(N, D
51 EMPossible . D) Slide 35
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Wide Angle FD-BPM — Implementation

2 2
Y v

. ¢, . . 4 .
Previously we solved 67+J2neff§+/1§y =0 by setting - =0. This was the small angle

approximation.

o N(4)
o~/ D()

For wide angle BPM, we instead solve ¢, where N(A4) and D(A) are the

polynomials of A.

This equation is usually implemented with finite-differences using the “multi-step” method.

G. Ronald Hadley, “Wide-angle beam propagation using Padé approximant operators,” Optics Lett., Vol. 17, No.
20, October 1992.
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Bi-Directional BPM

The beam propagation method inherently propagates waves in only the forward direction.
It is possible to modify the method so as to account for backward scattered waves.
This is accomplished in a manner similar to how we derived scattering matrices.

By the time BPM is modified to be bidirectional and wide-angle, it approaches being a
rigorous method. The implementation, however, is tedious. At this point, use the method
of lines which is fully rigorous and has a simpler implementation.

Hatem El-Refaei, David Yevick, and Ian Betty, “Stable and Noniterative Bidirectional Beam Propagation Method,”
IEEE Photonics Technol. Lett, Vol. 12, No. 4, April 2000.
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