

Electromagnetics: Electromagnetic Field Theory

Charge Distributions

1

Outline

- Charge Distributions
- Fields Around Charge Distributions
- Recipe to Calculate Field Around Charge Distributions

MPossible

Slide 2

Charge Distributions

lide 3

3

Point Charge Size: infinitely small QTotal Charge: Q

Fields Around Charge Distributions

lide 9

9

Recipe to Calculate Field Around Charge Distributions

Slide 13

13

Recipe for Solving Problems

- 1. Draw the problem and label with all dimensions and parameters.
- 2. Choose a coordinate system to make math easier.
- 3. Write general equation.

	Point	Line	Surface	Volume
$Q_{ m Total}$	$\sum_{i=1}^{N} Q_i$	$\int_{\ell} \rho_{\ell} d\ell$	$\iint\limits_{S}\rho_{s}ds$	$\iiint_{\mathbf{v}} \rho_{\mathbf{v}} d\mathbf{v}$
D_{Total}	$\sum_{i=1}^{N} \frac{Q_{i}}{4\pi R_{i}^{2}} \hat{a}_{R_{i}}$	$\int_{\ell} \frac{\rho_{\ell} d\ell}{4\pi R^2} \hat{a}_R$	$\iint \frac{\rho_s ds}{4\pi R^2} \hat{a}_R$	$\iiint \frac{\rho_{\nu} d\nu}{4\pi R^2} \hat{a}_R$

- 4. Write expressions for each term in the integral.
- 5. Choose limits of integration.
- 6. Solve the integral.
- 7. Interpret the result.

1 EMPossible

Slide 14