

Electromagnetics:

Electromagnetic Field Theory

Example 4 – The RG-59 Coaxial Transmission Line

1

Transmission Line Impedance

We have actually performed a very sophisticated analysis.

At the end of electrostatics, we derived the distributed capacitance.

$$\frac{C}{\ell} = \frac{2\pi\varepsilon}{\ln\left(\frac{a}{h}\right)}$$

At the end of magnetostatics, we derived the distributed inductance.

$$\frac{L}{\ell} = \frac{\mu}{2\pi} \left[\frac{1}{4} + \ln\left(\frac{b}{a}\right) \right]$$

We will now be able to calculate the characteristic impedance Z_0 of a coaxial transmission line!

$$Z_0 = \sqrt{\frac{L/\ell}{C/\ell}}$$

1 EMPossible

Slide 3

2

Example #7 – RG-59 Coax

A standard RG-59 coax has

Inner conductor diameter: 0.81 mm (20 AWG)

Outer conductor diameter: 3.66 mm

Dielectric constant: 2.1

Specified capacitance: 86.9 pF/m

$$\frac{C}{\ell} = \frac{2\pi \left(8.854 \times 10^{-12} \text{ F/m}\right) \left(2.1\right)}{\ln \left(3.66 \text{ mm}/0.81 \text{ mm}\right)} = 7.746 \times 10^{-11} \text{ F/m} = 77.46 \text{ pF/m}$$

$$\frac{L}{\ell} = \frac{1.2566 \times 10^{-6} \text{ H/m}}{2\pi} \left[\frac{1}{4} + \ln \left(\frac{3.66}{0.81} \right) \right] = 3.52 \times 10^{-7} \text{ H/m} = 352 \text{ nH/m}$$

$$Z_0 = \sqrt{\frac{3.52 \times 10^{-7} \text{ H/m}}{7.746 \times 10^{-11} \text{ F/m}}} = 64.7 \ \Omega$$
 The specified impedance is 75 Ω .

NEMPossible

Slide 3